
(石英晶体与石英晶片)
石英晶体谐振器,又叫做无源晶振,其核心功能材料是石英晶体。
石英晶体谐振器的工作原理
当电信号频率等于石英晶片固有机械谐振频率时,石英晶片因压电效应就会产生谐振现象。
石英晶体在外部压力的作用下产生形变,同时产生电极化,极化强度与压力成正比,这种特性被称为“正压电效应”。反之,当将电场作用于水晶材料时会产生形变,形变大小随电场强度成正比,此特性被称之为“逆压电效应”,此效应的存在使得水晶材料在电场作用下产生应力而形变,从而产生机械振动,获得特定的频率。

(石英晶体谐振器与芯片工作示意图)
简而言之,石英晶体谐振器是利用一种能把电能和机械能相互转化的石英晶体在共振的状态下工作,以提供稳定、精确的特定频率信号。在智能数码产品中,石英晶体谐振器为芯片提供时序信号,芯片基于这些频率信号进行逻辑运算,发出并完成所有指令程序。
(石英晶体谐振器)

(石英晶体振荡器)
石英晶体谐振器也是5G技术中最核心的电子零部件,作用是提供基准时钟信号,以及接收、传输及处理数据信号。5G网络设备需要高速处理海量数据,这就意味着5G对晶振稳定性、可靠性有很高的要求,如高精度、高稳定性、高频化等。而智能穿戴电子产品则还需要晶振具备低功耗及小型化等特点。
在智能电子数码产品中,需要用到的晶振分为两大类:石英晶体谐振器与石英晶体振荡器。石英晶体振荡器即有源晶振,其电路应用与石英晶体谐振器(无源晶振)有着显著的区别。
拓展阅读:晶振生产工艺:从石英晶体到高精度振荡器
石英晶体:晶振的核心基石
晶振的核心是石英晶体,其主要成分是二氧化硅(SiO₂),这种在自然界广泛存在于岩浆岩、变质岩、沉积岩和热液脉体中的氧化物矿物,是重要造岩矿物和岩石圈的重要组成部分。石英晶体不仅坚硬且无解理,拥有贝壳状断口,莫氏硬度达到7,密度为2.65g/cm³,还具备压电性,这些特性使其成为制造晶振的理想材料。
之所以石英晶体能够成为晶振的核心材料,关键在于其具有独特的压电效应。压电效应在晶振的工作过程中扮演着举足轻重的角色。晶振利用石英晶体的压电效应,在晶体两个表面镀上电极,施加电压时,晶体会产生形变并进而产生谐振,形成稳定的振荡信号。这一信号成为电子设备中不可或缺的时钟信号,为设备的稳定运行提供精确的时间基准。
从矿石到晶片:切割工艺的奥秘
将石英矿石转变为石英晶片的过程中,切割工艺起着关键作用。从大块的石英矿石到符合要求的晶片,每一步都需要精准控制。
在切割之前,首先要对石英矿石进行预处理,去除杂质,确保其纯度达到生产要求。常用的预处理方法包括破碎、筛分、磁选除铁、酸洗处理以及干燥与包装等,以去除大块杂质、铁质杂质以及表面附着物,提高其纯度和白度。
随后进入切割环节,常见的切割设备有砂轮切割机、激光切割机和超声波切割机。砂轮切割机适用于较大尺寸的石英晶片切割,效率较高;激光切割机属于非接触式切割,能满足高精度要求,切割边缘光滑;超声波切割机则利用高频振动进行切割,适合薄而脆的石英晶片,切割精度高。在切割过程中,操作人员需要根据晶片的尺寸、精度要求以及石英矿石的特性,选择合适的切割设备和参数,以确保切割质量。
切割方式对晶振性能有着显著影响。由于石英是各向异性的,不同的切型其物理性质不同,切面方向与主轴的夹角对频率稳定性、Q值、温度性能等都至关重要。常见的切割类型包括AT切、BT切和SC切等。
晶片加工:多道工序造就品质
切割完成后的石英晶片,还需要经过多道精细的加工工序,才能成为满足要求的晶振部件,这些工序对晶振的性能和稳定性有着重要影响。
清洗是首要工序,切割过程可能会使晶片表面沾染碎屑、油污等杂质,而这些杂质会影响晶片后续加工质量和性能。
排片工序则是将切割好的晶片按照特定的规格和要求进行布局,目的是最大限度地利用晶片的表面积,并确保晶片之间的间距和位置符合设计要求,为后续溅射被银等工序做好准备,方便操作更准确、更均匀。
溅射被银是将银材料通过溅射工艺涂覆在晶片表面的金属电极区域,被银的金属电极可以提供晶振的振荡信号。
点胶是将胶水涂抹在晶片的特定位置上,以固定晶片和其他组件的连接,增加组件的机械强度和稳定性。
烘胶工序是将点胶后的晶片进行烘烤,加快胶水的固化,进一步固定晶片与其他组件的连接,确保整个结构的稳定性。
频率微调:追求高精度的关键
频率微调是晶振生产中至关重要的环节,其目的是精确调整晶振的振荡频率,使其严格达到设计要求,确保晶振在不同工作环境下都能输出稳定且准确的频率信号。
实现频率微调的方法丰富多样,各有其独特的原理和适用场景。
机械微调法是较为传统的方式,它通过机械装置对晶振的物理结构进行细微调整,从而改变晶振的频率。
电容调谐法是通过改变与晶振相连的电容值来实现频率微调。根据晶振的等效电路模型,电容的变化会影响晶振的谐振频率。
电感调谐法的原理与电容调谐法类似,是通过改变与晶振相连的电感值来调整频率。
激光微调法是一种较为先进的频率微调技术,它利用高能量的激光束对晶振的特定部位进行精确加工,通过改变晶振的物理结构和参数来实现频率微调。
封装与检测:为晶振保驾护航
完成频率微调后的晶振,还需要经过封装和检测等环节,才能成为最终交付市场的产品。
封装是晶振生产的重要环节,它为晶振提供物理保护和电气连接,不同的封装材料和方式会对晶振的性能产生影响。
表面贴装封装(SMD)是顺应电子产品小型化和自动化生产趋势的“宠儿”,它将晶振直接焊接在印刷电路板(PCB)的表面焊盘上,通过回流焊等表面贴装工艺实现电气连接和机械固定。这种封装方式不仅减小了晶振的体积,还提高了生产效率,适用于高密度的电路板设计。
检测环节是确保晶振质量的关键,通过一系列严格的检测,可以筛选出不合格产品,保证出厂产品的质量和一致性。在晶振的生产线上,需要对采购的原材料进行严格筛选和测试,确保其质量符合生产要求,包括对晶振基座、金属外壳、晶片等材料的物理和化学性质进行检测。
完成初步组装的晶振会经过老化测试,即在特定温度和湿度条件下长时间运行,以检测其长期稳定性和可靠性。老化测试后的成品会再次进行全部检测,包括外观检查、电气性能测试等,确保每一颗晶振都符合质量标准。
